ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Sagara Akio, Yamanishi Hirokuni, Uda Tatsuhiko, Motojima Osamu, Kunugi Tomoaki, Matsumoto Youji, Wu Yican, Matsui Hideki, Takahasi Shintaro, Yamamoto Takuya, Toda Saburo, Mitarai Osamu, Satake Shin-Ichi, Terai Takayuki, Tanaka Satoru, Fukada Satoshi, Nishikawa Masabumi, Shimizu Akihiko, Yoshida Naoaki
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 753-757
Chamber Technology | doi.org/10.13182/FST01-A11963329
Articles are hosted by Taylor and Francis Online.
The self-cooling molten-salt Flibe blanket of FFHR is numerically analyzed, resulting the optimum first wall to be as thin as 5mm and the heat flux up to 0.25MW/m2 to be feasible with adopting V-4Cr-4Ti as the structural material. An alternative concept of free surface using a capillary force is shown to be feasible even in helical systems, where a spiral flow is formed and drastically enhances the heat transfer efficiency. The nuclear property of Flibe blanket is modified with increasing Be amount and adopting carbon reflector, resulting the local TBR of 1.3. As an optional technique, 50% enrichment of Li-6 gives the maximum TBR of 1.4.