ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
A.Y. Ying, M. Abdou, S. Smolentsev, H. Huang, R. Kaita, R. Maingi, N. Morley, B. Nelson, T. Sketchley, M. Ulrickson, R. Woolley
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 739-745
Chamber Technology | doi.org/10.13182/FST01-A11963327
Articles are hosted by Taylor and Francis Online.
In the APEX study, one of the tasks focuses on the exploration and identification of the attractive options and issues for flowing liquid lithium walls in the NSTX device. In addition to constraints imposed by the machine, the operating conditions of the flowing liquid walls along the center stack and divertor areas are guided by MHD and heat removal requirements. In this paper, we present important MHD and heat removal issues and analysis for the proposed free surface lithium flows under NSTX conditions. It is shown that of all MHD effects, the one caused by the normal magnetic field is the most important. The flow over the center stack area is not affected by MHD interaction significantly, whereas flow over the inboard divertor undergoes strong MHD drag resulting in flow thickening by several times. The flow over the outboard divertor is essentially stopped. The analysis shows that a flow with an inlet velocity of 2 m/s and film thickness of about 4 mm can be established to provide surface temperature less than 400° C for the center stack under a projected NSTX total heating power of 10 MW operation.