ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Zaporizhzhia ‘extremely fragile’ relying on single off-site power line, IAEA warns
Europe’s largest nuclear power plant has just one remaining power line for essential nuclear safety and security functions, compared with its original 10 functional lines before the military conflict with Russia, warned Rafael Mariano Grossi, director general of the International Atomic Energy Agency.
Lance C. Elwell, Dennis L. Sadowski, Minami Yoda, Said I. Abdel-Khalik
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 716-720
Chamber Technology | doi.org/10.13182/FST01-A11963323
Articles are hosted by Taylor and Francis Online.
Recently, oscillating high-speed slab jets, or liquid sheets, have been proposed for shielding the first walls of inertial fusion energy (IFE) reactor chambers from damaging X-rays, neutrons and ions. The near-field dynamics of obliquely oscillating turbulent liquid sheets were investigated in scaled experiments. Results are presented for sheets at Reynolds numbers up to 37000 oscillated along various directions at frequencies from 0 to 11 Hz and amplitudes up to half the nozzle thickness (0.5δ). Data on maximum trajectories of oscillating sheets and growth rates of stationary sheets are presented for distances up to 90δ downstream of the nozzle exit. A model for predicting the maximum trajectory is presented. The bulk of the experimental data are in reasonable agreement with this model. These results can be used to provide design guidelines for thick liquid protection.