ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
P.F. Peterson
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 702-710
Chamber Technology | doi.org/10.13182/FST01-A11963321
Articles are hosted by Taylor and Francis Online.
High-temperature, low-vapor-pressure liquid jets can provide neutron shielding for inertial fusion energy (IFE) target chambers. To minimize pumping power, free liquid jets must be located close to the target to reduce the total liquid volume required for shielding each fusion shot. For heavy ion drivers compact liquid geometry provides additional benefits by reducing focus-magnet stand off distance. The disruption of the liquid by targets involves complex fluid mechanics, as does the subsequent droplet clearing and pocket regeneration. The ranges of time, length, and energy-density scales in IFE target chambers are extreme compared to most engineered systems. Scaling, discussed in detail here, can identify optimal approaches to study and model liquid response, and minimize experimental distortion. More broadly, the systematic categorization of IFE phenomena by duration and location is shown to provide a natural format for selecting experiments to study IFE phenomena ranging from beam transport to chamber activation.