ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
P.F. Peterson
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 702-710
Chamber Technology | doi.org/10.13182/FST01-A11963321
Articles are hosted by Taylor and Francis Online.
High-temperature, low-vapor-pressure liquid jets can provide neutron shielding for inertial fusion energy (IFE) target chambers. To minimize pumping power, free liquid jets must be located close to the target to reduce the total liquid volume required for shielding each fusion shot. For heavy ion drivers compact liquid geometry provides additional benefits by reducing focus-magnet stand off distance. The disruption of the liquid by targets involves complex fluid mechanics, as does the subsequent droplet clearing and pocket regeneration. The ranges of time, length, and energy-density scales in IFE target chambers are extreme compared to most engineered systems. Scaling, discussed in detail here, can identify optimal approaches to study and model liquid response, and minimize experimental distortion. More broadly, the systematic categorization of IFE phenomena by duration and location is shown to provide a natural format for selecting experiments to study IFE phenomena ranging from beam transport to chamber activation.