ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P.F. Peterson
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 702-710
Chamber Technology | doi.org/10.13182/FST01-A11963321
Articles are hosted by Taylor and Francis Online.
High-temperature, low-vapor-pressure liquid jets can provide neutron shielding for inertial fusion energy (IFE) target chambers. To minimize pumping power, free liquid jets must be located close to the target to reduce the total liquid volume required for shielding each fusion shot. For heavy ion drivers compact liquid geometry provides additional benefits by reducing focus-magnet stand off distance. The disruption of the liquid by targets involves complex fluid mechanics, as does the subsequent droplet clearing and pocket regeneration. The ranges of time, length, and energy-density scales in IFE target chambers are extreme compared to most engineered systems. Scaling, discussed in detail here, can identify optimal approaches to study and model liquid response, and minimize experimental distortion. More broadly, the systematic categorization of IFE phenomena by duration and location is shown to provide a natural format for selecting experiments to study IFE phenomena ranging from beam transport to chamber activation.