ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
Ronald W. Petzoldt, Michael Cherry, Neil B. Alexander, Daniel T. Goodin, Gottfried E. Besenbruch, Ken R. Schultz, General Atomics
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 678-683
Chamber Technology | doi.org/10.13182/FST01-A11963317
Articles are hosted by Taylor and Francis Online.
Driver beams must hit targets accurately in an inertial fusion energy power plant. Current requirements are less than ±200 μm for indirect drive targets and ±20 μm for direct drive targets. A recent target tracking and position prediction experiment was carried out using indirect drive target sized projectiles.1 The results of that scaled experiment extrapolate to a standard deviation of 220 μm error in position prediction at power plant size. Greater accuracy will be required, especially for direct drive targets. Greater standoff between the detectors and the targets (previously about 3 cm) will also be required to allow for detector shielding. Diffraction effects are expected to be more important with greater standoff and accuracy requirements.
An improved optical target tracking and position prediction system is being designed, as part of the Target Injection and Tracking Experiment at General Atomics, to achieve the above requirements. Concepts for improving accuracy include the use of multiple photodiode arrays, a temperature controlled environment, vibration-limiting detector mounts, additional detector stations, improved electronic noise suppression, and constant-brightness laser light sources. The current status of this design work is presented.