ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Ronald W. Petzoldt, Michael Cherry, Neil B. Alexander, Daniel T. Goodin, Gottfried E. Besenbruch, Ken R. Schultz, General Atomics
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 678-683
Chamber Technology | doi.org/10.13182/FST01-A11963317
Articles are hosted by Taylor and Francis Online.
Driver beams must hit targets accurately in an inertial fusion energy power plant. Current requirements are less than ±200 μm for indirect drive targets and ±20 μm for direct drive targets. A recent target tracking and position prediction experiment was carried out using indirect drive target sized projectiles.1 The results of that scaled experiment extrapolate to a standard deviation of 220 μm error in position prediction at power plant size. Greater accuracy will be required, especially for direct drive targets. Greater standoff between the detectors and the targets (previously about 3 cm) will also be required to allow for detector shielding. Diffraction effects are expected to be more important with greater standoff and accuracy requirements.
An improved optical target tracking and position prediction system is being designed, as part of the Target Injection and Tracking Experiment at General Atomics, to achieve the above requirements. Concepts for improving accuracy include the use of multiple photodiode arrays, a temperature controlled environment, vibration-limiting detector mounts, additional detector stations, improved electronic noise suppression, and constant-brightness laser light sources. The current status of this design work is presented.