ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Katsumi Yoshida, Toyohiko Yano, Takayoshi Iseki
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 607-611
Fusion Materials | doi.org/10.13182/FST01-A11963304
Articles are hosted by Taylor and Francis Online.
The interfacial strength of SiC/SiC composites fabricated by hot-pressing (HP) and chemical vapor infiltration (CVI) method was measured by push-in test, and the effect of interfacial strength on the fracture behavior of SiC/SiC composites was investigated. Maximum strength and fracture energy of the CVI-SiC/SiC composite was higher than those of the HP-SiC/SiC composite due to lower interfacial shear sliding strength and higher fiber strength. The SiC/SiC composite hot-pressed at 1750 °C had a higher interfacial shear sliding strength and lower fiber strength, resulting in low maximum strength and fracture energy. The SiC/SiC composite hot-pressed at 1650 °C showed a lower maximum strength and higher fracture energy in spite of a lower interfacial shear sliding strength and higher fiber strength. In this case, the delamination between fiber and the matrix occurs easily.