ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Katsumi Yoshida, Toyohiko Yano, Takayoshi Iseki
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 607-611
Fusion Materials | doi.org/10.13182/FST01-A11963304
Articles are hosted by Taylor and Francis Online.
The interfacial strength of SiC/SiC composites fabricated by hot-pressing (HP) and chemical vapor infiltration (CVI) method was measured by push-in test, and the effect of interfacial strength on the fracture behavior of SiC/SiC composites was investigated. Maximum strength and fracture energy of the CVI-SiC/SiC composite was higher than those of the HP-SiC/SiC composite due to lower interfacial shear sliding strength and higher fiber strength. The SiC/SiC composite hot-pressed at 1750 °C had a higher interfacial shear sliding strength and lower fiber strength, resulting in low maximum strength and fracture energy. The SiC/SiC composite hot-pressed at 1650 °C showed a lower maximum strength and higher fracture energy in spite of a lower interfacial shear sliding strength and higher fiber strength. In this case, the delamination between fiber and the matrix occurs easily.