ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Yu Iwamoto, Takayuki Shirouzu, Yasushi Yamamoto, Nobuyuki Inoue
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 552-556
Nonelectric Applications | doi.org/10.13182/FST01-A11963294
Articles are hosted by Taylor and Francis Online.
Effects of electrode shape on fusion reaction rate in the cylindrical IECF device are investigated by the experiments to verify simulation results. The effects of the cylindrical edge of anodes are clearly observed, but the effect of cathode length and radius is not clear in the preliminary experiments. The maximum neutron generation rate of ~47 thousand neutrons per second is obtained with 37.5kV, 6mA discharge using an anode with 40-mm depth edge.