ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
NRC cancels advanced reactor meeting due to government shutdown
The Nuclear Regulatory Commission has announced it is cancelling an upcoming advanced reactor stakeholder meeting, originally scheduled for November 19, due to the government shutdown and the limitations on staffing at the agency.
Nermin A. Uckan, John C. Wesley
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 398-402
Advanced Designs | doi.org/10.13182/FST01-A11963267
Articles are hosted by Taylor and Francis Online.
The physics design guidelines for a next step, high-field tokamak, burning plasma experiment (FIRE, Fusion Ignition Research Experiment) have been developed as an update of the ITER Physics Basis (IPB). The plasma performance attainable in FIRE (or any next-step device) is affected by many physics issues, including energy confinement, L-to-H-mode power transition thresholds, MHD stability/beta limit, density limit, helium accumulation/removal, impurity content, sawtooth effects, etc. Design basis and guidelines are provided in each of these areas, along with sensitivities and/or uncertainties involved. The overall basic device parameters and features for FIRE (R = 2 m, a = 0.525 m, κ95 ~ 1.8, δ95 ~ 0.4, q95 > 3, B = 10-12 T, I = 6.45-7.7 MA, Pfus ~ 100-200 MW, Q ~ 5-10) are consistent with these guidelines and uncertainties if the potential design upgrade option (12 T, 8 MA) is considered as part of the main design option.