ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
M.A Ulrickson, C. Baxi, J. Brooks, D. Driemeyer, A. Hassenein, C. E. Kessel, B. E. Nelson, T. Rognlein, J. C. Wesley
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 378-382
Advanced Designs | doi.org/10.13182/FST01-A11963263
Articles are hosted by Taylor and Francis Online.
A design study of a Fusion Ignition Research Experiment (FIRE) is underway to investigate and assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis for the FIRE program is on understanding the behavior of plasmas dominated by alpha heating (Q ≥ 5). Study activities have focused on the technical evaluation of a compact, high field, highly shaped tokamak. One of the key issues for the design is to find suitable plasma facing components (PFCs). We have investigated a variety of plasma edge and divertor conditions ranging from reduced recycling high heat flux conditions (attached) to reduced heat flux detached operation. The inner divertor detaches easily while impurities must be added to the outer divertor to achieve detachment. The outer divertor and private space baffle will have to be actively cooled. The plasma-facing surface of the divertor is tungsten bonded to a CuCrZr heat sink. The remainder of the PFCs are beryllium coated copper attached to the vacuum vessel. Plasma current disruptions impose strong constraints on the design. Appreciable PFC surface melting and evaporation and onset of “plasma shielding” are expected. The forces induced on the PFC due to disruptions determine the size of the attachment of the PFC to the vacuum vessel.