ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
M.A Ulrickson, C. Baxi, J. Brooks, D. Driemeyer, A. Hassenein, C. E. Kessel, B. E. Nelson, T. Rognlein, J. C. Wesley
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 378-382
Advanced Designs | doi.org/10.13182/FST01-A11963263
Articles are hosted by Taylor and Francis Online.
A design study of a Fusion Ignition Research Experiment (FIRE) is underway to investigate and assess near term opportunities for advancing the scientific understanding of self-heated fusion plasmas. The emphasis for the FIRE program is on understanding the behavior of plasmas dominated by alpha heating (Q ≥ 5). Study activities have focused on the technical evaluation of a compact, high field, highly shaped tokamak. One of the key issues for the design is to find suitable plasma facing components (PFCs). We have investigated a variety of plasma edge and divertor conditions ranging from reduced recycling high heat flux conditions (attached) to reduced heat flux detached operation. The inner divertor detaches easily while impurities must be added to the outer divertor to achieve detachment. The outer divertor and private space baffle will have to be actively cooled. The plasma-facing surface of the divertor is tungsten bonded to a CuCrZr heat sink. The remainder of the PFCs are beryllium coated copper attached to the vacuum vessel. Plasma current disruptions impose strong constraints on the design. Appreciable PFC surface melting and evaporation and onset of “plasma shielding” are expected. The forces induced on the PFC due to disruptions determine the size of the attachment of the PFC to the vacuum vessel.