ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Dale M. Meade
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 336-342
Fusion Technology Plenary | doi.org/10.13182/FST01-A11963257
Articles are hosted by Taylor and Francis Online.
Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for producing and studying fusion dominated plasmas in the laboratory. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q ≥ 5) that are sustained for a duration comparable to the characteristic plasma time scales (≥ 20 τE and ~ 1.5 τskin, where τskin is the time for the plasma current profile to redistribute at fixed current). These requirements can be satisfied with BeCu/OFHC toroidal field coils and OFHC poloidal coils that are pre-cooled to 77 °K prior to the pulse. The plasma facing components will have tungsten divertor plates and Be first wall tiles. No graphite is allowed inside the vacuum vessel due to tritium retention issues. The mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤ 0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major constraint is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B.