ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
T. Numakura, T. Cho, J. Kohagura, M. Hirata, R. Minami, Y. Nakashima, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 277-280
Poster Presentations | doi.org/10.13182/FST01-A11963460
Articles are hosted by Taylor and Francis Online.
A new method is proposed for obtaining radial profiles of both plasma ion (Ti) and electron temperatures (Te) simultaneously using one semiconductor detector array alone. Furthermore, availability of the new idea of the simultaneous Ti and Te diagnostics is experimentally demonstrated by the use of a small-sized semiconductor detector array. This novel method for semiconductor Ti diagnostics is proposed on the basis of an alternative “positive” use of a semiconductor “dead layer” as an energy-analysis filter. Filtering dependence of charge-exchange neutral particles from plasmas on the thickness on the order of nm thick SiO2 layer is used for analyzing Ti ranging from hundreds to thousands eV. In this report, proof-of-principle plasma experiments for the proposed idea are, at first, demonstrated in the GAMMA 10 tandem mirror to verify the availability of this novel idea of distinguishing and identifying each value of Ti and Te by the use of various thin filtering materials. Furthermore, novel experimental data on radial profiles of Ti and Te are simultaneously observed and analyzed using a semiconductor detector array along with the development of a Monte-Carlo computer simulation code for analyzing interactions between semiconductor materials and incident particles. The radial profiles of Ti and Te obtained from semiconductor detectors by the use of the proposed method are found to be in good agreement with those from a charge-exchange neutral-particle Ti analyzer and a microchannel-plate Te detector. Detailed data and analysis method are represented in the paper.