ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Y. Katsuki, K. Ishii, A. Fueki, Y. Takemura, K. Tsutsui, M. Shimoo, K. Yatsu
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 269-272
Poster Presentations | doi.org/10.13182/FST01-A11963458
Articles are hosted by Taylor and Francis Online.
In order to improve the axial confinement, in the tandem mirror machine, the electrostatic potentials are created on both sides of the machine. Usually, thermal barrier potential is created at the midplane of the plug/barrier cell. We note that the electrostatic potential at the Inner Mirror Throats (IMT) is able to play an important role acting as a barrier of the electron flow from the central cell to the plug cell. We examined the influence of the IMT potential on the electron flow by calculation, and it was found that the IMT potential acted effectively as the thermal barrier. In consideration of the undesirable condition at the IMT region, that is the tight accessibility and the strong magnetic field, we adopted a newly designed gold neutral beam probe system including a new type of MCP detector. The characteristics of the MCP detector were obtained successfully using a teststand with strong magnetic field created by the nuclear magnetic resonance (NMR) magnets.
This beam probe system was applied to the tandem mirror GAMMA 10, and the electrostatic potential was measured successfully by the beam probe system located in the neighborhood of the IMT region.