ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Mikirou Yoshinuma, Akira Ando, Noriyoshi Sato, Masaaki Inutake, Toshiro Kaneko, Kunihiko Hattori, Rikizo Hatakeyama
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 191-194
Topical Lectures | doi.org/10.13182/FST01-A11963439
Articles are hosted by Taylor and Francis Online.
Radial potential profiles are precisely controlled to vary both radial electric field Er and its shear by using a 10-segmented endplate in an ECR-produced plasma. Observed frequencies and intensities of flute-mode and drift-mode fluctuations depend on the potential profile. The frequencies are Doppler shifted by E × B drift. The flute-mode fluctuation is identified as Kelvin-Helmholtz type instability which is destabilized by strong E × B flow shear. The drift-mode fluctuation is destabilized in the region of small and negative electric field. When the E × B rotation frequency shear is increased with Er being fixed, the drift-mode fluctuations increase once in a weaker shear region, attain its peak at a certain shear and then decrease in the strong shear region. This behavior suggests that the rotation frequency shear of net ion drift which is determined from both E × B drift and diamagnetic drift is important for stabilizing the drift mode.