ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Mikirou Yoshinuma, Akira Ando, Noriyoshi Sato, Masaaki Inutake, Toshiro Kaneko, Kunihiko Hattori, Rikizo Hatakeyama
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 191-194
Topical Lectures | doi.org/10.13182/FST01-A11963439
Articles are hosted by Taylor and Francis Online.
Radial potential profiles are precisely controlled to vary both radial electric field Er and its shear by using a 10-segmented endplate in an ECR-produced plasma. Observed frequencies and intensities of flute-mode and drift-mode fluctuations depend on the potential profile. The frequencies are Doppler shifted by E × B drift. The flute-mode fluctuation is identified as Kelvin-Helmholtz type instability which is destabilized by strong E × B flow shear. The drift-mode fluctuation is destabilized in the region of small and negative electric field. When the E × B rotation frequency shear is increased with Er being fixed, the drift-mode fluctuations increase once in a weaker shear region, attain its peak at a certain shear and then decrease in the strong shear region. This behavior suggests that the rotation frequency shear of net ion drift which is determined from both E × B drift and diamagnetic drift is important for stabilizing the drift mode.