ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Edward P. Kruglyakov
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 57-64
Invited Review Lectures | doi.org/10.13182/FST01-A11963415
Articles are hosted by Taylor and Francis Online.
In the paper presented here different approaches to the problem of design and construction of high power 14 MeV neutron sources are described. It has been already well recognized by fusion society and material scientists that the problem of tests of existing structural materials so as problem of creation of new ones for future fusion power plants should be solved in the nearest years. Comparison of different schemes of NSs came us to conclusion that accelerator based NSs cannot solve all the problems of material tests. It is shown that among plasma based NSs the neutron sources on the basis of mirror machines are able to solve the problems of materials tests with lowest capital and operating cost.
Among mirror based NSs, at present, the most advanced candidate both: from experimental and theoretical point of view is the Gas Dynamic Trap (GDT). Recent experiment with oblique injection of fast deuterium atoms in warm target hydrogen plasma has demonstrated a good agreement with results of calculations as from the viewpoint of spatial distribution of the neutrons of D-D reaction, so from the viewpoint of absolute value of the neutron flux density. It should be noted that the GDT based NS is the object of interest even with existing, at present, plasma parameters (more exactly the electron temperature of the target plasma should be increased two times in comparison with the present level). The increase of the temperature from 130 eV up to 250 eV makes it possible to produce a moderate neutron flux density only several times less than that in the full-scale projects. An obvious advantage of this moderate version of the NS consists of the fact that the plasma physics database for such a source has already existed. Thus, the NS with neutron flux density of order of 200-400 kW/m2 can be designed and constructed on the basis of the present day experience. As the next step of such approach significant increase of neutron flux density will be possible in result of increase of power of D-T neutral beam injection. The comparison of this approach with another ones is made.