ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Kiyoshi Yatsu, Teruji Cho, Mafumi Hirata, Hitoshi Hojo, Makoto Ichimura, Kameo Ishii, Akiyoshi Itakura, Isao Katanuma, Junko Kohagura, Yousuke Nakashima, Teruo Saito, Teruo Tamano, Satoshi Tanaka, Yoshinori Tatematsu, Masayuki Yoshikawa
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 3-9
Invited Review Lectures | doi.org/10.13182/FST01-A11963408
Articles are hosted by Taylor and Francis Online.
After the last Novosibirsk Conference (1998), GAMMA 10 experiments have advanced in long sustainment of confining potential and higher density experiments. An experiment which attained doubling of density due to potential confinement with a 50 ms duration was reported before [1]. Experiments for long sustainment of potential confinement were carried out in order to study problems of steady state operation of a tandem mirror reactor. A confining potential was sustained for 150 ms by sequentially injecting two electron cyclotron resonance heating (ECRH) powers in the plug region. It was difficult before to increase the central cell density higher than about 2.5 × 1012cm−3 with and/or without potential confinement due to some density limiting mechanism. In order to overcome this problem, a new higher frequency ion cyclotron range of frequency (ICRF) system (RF3: 36–76 MHz, ω/ωci~6-10) has been installed. A higher density plasma has been produced with RF3. In addition to RF3, neutral beam injection (NBI) in the anchor cell became effective by reducing neutral gas from beam injectors. The plasma density in the anchor cell increased 70% by NBI for 20 ms, and the central cell density increased 20% with the density increase in the anchor cell. Potential confinement experiments at higher central cell densities up to 4 × 1012 cm−3 were carried out with RF3 and NBI and 15% density increase due to the potential confinement was obtained in the high density experiments. The ion temperature on the axis and particle confinement time during potential confinement were 3 keV and 10 ms, respectively. We expect a larger density increase at a higher initial density by optimization of heating scenario with respect to ECRH, ICRF heating and NBI.