ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
André L. Rogister
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 271-286
Instabilities and Transport | doi.org/10.13182/FST00-A11963222
Articles are hosted by Taylor and Francis Online.
The phenomenology of transport in magnetically confined plasmas is briefly described and the basic physical concepts underlying the theories of both anomalous and neoclassical transport are reviewed. Anomalous transport is a consequence of supra-thermal electric and magnetic fluctuations driven unstable by various mechanisms. The excited modes saturate by inducing a relaxation of the profiles towards the marginally stable state and via nonlinear coupling of the various modes. Specific theoretical models are described, together with their successes and drawbacks in the light of observed characteristics of plasma confinement. An estimate of the nuclear heating power required to balance the anomalous losses in the International Tokamak Experimental Reactor (ITER) is obtained on the basis of the electrostatic drift wave instability model. Large-scale gyrokinetic turbulence simulations and various “theoretical” transport models are discussed. Recent improvements of neoclassical theory, required in the vicinity of transport barriers, are described.