ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
André L. Rogister
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 271-286
Instabilities and Transport | doi.org/10.13182/FST00-A11963222
Articles are hosted by Taylor and Francis Online.
The phenomenology of transport in magnetically confined plasmas is briefly described and the basic physical concepts underlying the theories of both anomalous and neoclassical transport are reviewed. Anomalous transport is a consequence of supra-thermal electric and magnetic fluctuations driven unstable by various mechanisms. The excited modes saturate by inducing a relaxation of the profiles towards the marginally stable state and via nonlinear coupling of the various modes. Specific theoretical models are described, together with their successes and drawbacks in the light of observed characteristics of plasma confinement. An estimate of the nuclear heating power required to balance the anomalous losses in the International Tokamak Experimental Reactor (ITER) is obtained on the basis of the electrostatic drift wave instability model. Large-scale gyrokinetic turbulence simulations and various “theoretical” transport models are discussed. Recent improvements of neoclassical theory, required in the vicinity of transport barriers, are described.