ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
André L. Rogister
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 271-286
Instabilities and Transport | doi.org/10.13182/FST00-A11963222
Articles are hosted by Taylor and Francis Online.
The phenomenology of transport in magnetically confined plasmas is briefly described and the basic physical concepts underlying the theories of both anomalous and neoclassical transport are reviewed. Anomalous transport is a consequence of supra-thermal electric and magnetic fluctuations driven unstable by various mechanisms. The excited modes saturate by inducing a relaxation of the profiles towards the marginally stable state and via nonlinear coupling of the various modes. Specific theoretical models are described, together with their successes and drawbacks in the light of observed characteristics of plasma confinement. An estimate of the nuclear heating power required to balance the anomalous losses in the International Tokamak Experimental Reactor (ITER) is obtained on the basis of the electrostatic drift wave instability model. Large-scale gyrokinetic turbulence simulations and various “theoretical” transport models are discussed. Recent improvements of neoclassical theory, required in the vicinity of transport barriers, are described.