ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
André L. Rogister
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 239-248
Instabilities and Transport | doi.org/10.13182/FST00-A11963219
Articles are hosted by Taylor and Francis Online.
Most experts consider that the causes of anomalous energy and particle transport in fusion devices are low frequency “drift” waves, themselves driven unstable by the equilibrium gradients and the associated drifts across the confining magnetic field (hence the terminology). We first introduce the dimensionless parameters which characterize drift waves (drift ordering). We then accordingly simplify the conventional two fluids description and obtain the general eigenvalue equations for drift eigenmodes. We finally search for solutions with angular frequency ω~ω* (the diamagnetic drift frequency), ω~λω*, etc … assuming λ≡LN(T)/qR ≪ 1 [LN(T) is the density (temperature) gradient length and qR is the connection length]. We recover in this way both the electron and the ion drift branches. The poloidal variation of the magnetic field has two opposite effects on the growth (damping) rate according to whether the width of the modes is larger or smaller than the distance between the rational surfaces q(r)=m/ℓ and q(r+Δ)=(m+l)/ℓ. Kinetic effects and the role of trapped particles are not described by the two fluid description but could be readily included.