ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
L.N. Vyacheslavov, V.F. Gurko, O.I. Meshkov, V.F. Zharov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 422-426
Poster Presentations | doi.org/10.13182/FST99-A11963898
Articles are hosted by Taylor and Francis Online.
Two laser scattering systems based on Nd-glass laser and avalanche photodiodes are proposed. First system is designed for observation of radial profiles of the electron plasma density and temperature. Each of its 2–4 spectral modules consists of 25 spatial channels and includes a bandpass interference filter, low F-number camera lens, and 25-channel linear array of the avalanche photodiodes followed by amplifiers and ADCs. Every of 25 spatial channel can view the plasma volume with an adjustable length of 1.5–15 mm along the radius of a trap. In the IR spectral region the plasma background radiation is small and the main source of noise is the amplifier noise, which permits in this case observation of a plasma of a density of 1012 cm−3 with the S/N >60.
The second system is intended for measuring the longitudinal ne and Te profiles and uses the LIDAR technique, which is more suitable for open traps than for large tokomaks due to considerable larger axial length. A relative simple short pulse version of the probe laser (0.5–1 ns, 10 J), commercially available high speed APD-preamplifier modules, and ADC, as well as very high contrast-interference filters can provide longitudinal measurements with the spatial resolution 1 ≤·20 cm and S/N > 40 for ne ⩾1012 cm−3
The probe laser (30J, 8 ns, 1.06 μm, 0.2 mrad) and the prototype of a single spectral module for radial measurements have been developed an used in an experiment.