ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Gennadij T. Razdobarin, Eugene E. Mukhin, Vladimir V. Semenov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 389-392
Poster Presentations | doi.org/10.13182/FST99-A11963891
Articles are hosted by Taylor and Francis Online.
ITER divertor operation is dominated by the necessity to exhaust around 200MW power via the scrape-off layer. A large fraction of the input power must be irradiated by the impurities either intrinsic or seeded. It is important that the radiation source be well distributed over the entire divertor plasma. The plasma detachment at the divertor target should be precisely adjusted as to enable a partially attached operating, that is detached near the separatrix strike point and attached further out in the scrape-off layer. To provide information on key fenomena which may limit the divertor performance is the challenging task for diagnostics in ITER.
The reliable Tc, nc profile measurements in the divertor upstream (near X-point) and downstream (divertor bottom) regions address the highly promising Thomson scattering diagnostics. The high resolution time-of-flight LIDAR Thomson scattering for the X-point and the conventional Thomson scattering technique for the divertor leg fit the reference divertor configuration with minimal impact on ITER design.