ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Gennadij T. Razdobarin, Eugene E. Mukhin, Vladimir V. Semenov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 389-392
Poster Presentations | doi.org/10.13182/FST99-A11963891
Articles are hosted by Taylor and Francis Online.
ITER divertor operation is dominated by the necessity to exhaust around 200MW power via the scrape-off layer. A large fraction of the input power must be irradiated by the impurities either intrinsic or seeded. It is important that the radiation source be well distributed over the entire divertor plasma. The plasma detachment at the divertor target should be precisely adjusted as to enable a partially attached operating, that is detached near the separatrix strike point and attached further out in the scrape-off layer. To provide information on key fenomena which may limit the divertor performance is the challenging task for diagnostics in ITER.
The reliable Tc, nc profile measurements in the divertor upstream (near X-point) and downstream (divertor bottom) regions address the highly promising Thomson scattering diagnostics. The high resolution time-of-flight LIDAR Thomson scattering for the X-point and the conventional Thomson scattering technique for the divertor leg fit the reference divertor configuration with minimal impact on ITER design.