ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Vladimir M. Fedorov, Vladimir P. Tarakanov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 320-324
Poster Presentations | doi.org/10.13182/FST99-A11963876
Articles are hosted by Taylor and Francis Online.
The article present our recent results of computer simulations and theory analysis concerning of dynamics of the crossed E×B-fields back-bombardment (BKB) instability in magnetron diodes. The concept of the BKB-instability applied to show new explanation for known experimental data of an intense ion heating in accelerated plasma streams. Main features of the BKB-instability into ion diodes are following: 1) ion magnetic insulation is d0 > ri where d0 is accelerating gap across applied magnetic field B0, ri = 5V00.5/B0 is proton Larmor radius, cm; V0 – applied voltage, kV; B0 – kG; 2) EA ≠ 0 is high electric field on self or secondary emission anode electrodes; 3) main frequency oscillation of fs = fci/2 = 0.76 B0 MHz; 4) convert power efficiency of ηB = P~/P0 is up to 50%.
Radial proton HF-oscillations current density of the Jir provided by the BKB-instability excites magnetohydrodynamics waves. They are propagated in the tube plasma with azimuthal velocity v∼9 ~ 107 cm/s (Miv∼92 ~ eV0) and along the B0 with the vA ~ 4×107 cm/s -Alfven velocity. Known experimental data was demonstrated a level of the HF-oscillation power which was absorbed by proton streams by ion cyclotron heating equals up to 30% total supply power of the 1 MW.
Work supported by RFFI under grant 96-02-19215.