ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Valentin V. Danilov, Vladimir V. Mirnov, Defne Üçer
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 312-314
Poster Presentations | doi.org/10.13182/FST99-A11963874
Articles are hosted by Taylor and Francis Online.
New applications of space tethers (High-Voltage Tethered Satellite System project) are discussed in relation with idea1 of an active experiment in the Earth's radiation belts. Two conducting strings are supposed to be tethered between the main satellite and two small subsatellites flying through the ERB. A large potential difference ∼1MV is applied between the tethers by means of a generator carried on the main satellite. The tethers effectively scatter the high energy particles into loss cone of magnetic trap, providing a control of particle life time in ERB. The rigorous theory of the sheath layer formed by relatively cold plasma is developed, yielding the electric field profile, which is then used for the treatment of scattering problem. With the help of Fokker-Planck equation the average rate of particle losses, normalized per 1 km of the tether's length is found to be: (2.5 ÷ 14) · 1016 s−1 km−1 for electron belts and 1.8·1014÷2.5·1020 s−1 km−1 for proton belts. New active experiments in space become possible under the joint realization of HVTSS and HAARP projects.