ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yuri A. Tsidulko, Sinan Bilikmen, Serhat Cakir, Ehab Marji, Vladimir V. Mirnov, Gulay Oke
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 304-307
Poster Presentations | doi.org/10.13182/FST99-A11963872
Articles are hosted by Taylor and Francis Online.
Plasma axial-shear flow instability arises due to a variation in an equilibrium E × B rotation along the axial direction in which the magnetic field is aligned. The two fluid MHD equations for incompressible perturbation (taking into account the FLR effects) being treated in WKB approximation in transversal direction yield one scalar Klein-Gordon type equation with one-dimensional effective potential U(s) and effective mass m(s). Only axisymmetric, paraxial geometry is analyzed in order to separate the desired effects from the effects related to a variation in cross-sectional shape of the magnetic flux tube. In this work the effective potential was considered for a semi-infinite bounded plasma, first in the form of a square well for analytical study and then in a linear nature to study in the so called “tachion” region. Growth rates as a function of the potential well depth and other parameters were calculated. The cases where effective mass is real and imaginary “tachion” regime were considered. The results obtained are interesting for the stability problem of such open devices as GDT, GAMMA-10, AMBAL-M and the scrape-off layer in tokamak divertors.