ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Timofeev A.V., Tupikov S.E.
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 253-257
Oral Presentations | doi.org/10.13182/FST99-A11963862
Articles are hosted by Taylor and Francis Online.
The influence of a non-uniform electrical field, perpendicular magnetic on drift instability was studied by Sanuki et al.1,2 They have shown, that the drift instability is stabilized at a rather large gradient of an electrical field. This result was received by means of the analysis of an integral wave equation, which describes the plasma oscillations with Gaussian profile of density and linear profile of an electrical field at arbitrary Larmour radius of charged particles.
We describe the drift oscillation by the differential wave equation. This equation can be used at any profiles of plasma density and electrical field, if Larmour radius of the charged particles is rather small. In case of linear profile of an electrical field, our results confirm those received in 1,2. We have also shown, that the drift instability is transformed to Kelvin-Helmholtz instability in case of an electrical field profile with an inflexion point (smooth step profile).