ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Serhat Cakir, S. Eren San, Vladimir V. Mirnov, Gulay Oke
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 215-217
Oral Presentations | doi.org/10.13182/FST99-A11963854
Articles are hosted by Taylor and Francis Online.
The marginal stability of MHD modes is discussed in application for high beta multiple mirror experiments planned at Budker Institute of Nuclear Physics. Flute modes arc dangerous in axisymmetric systems with β < 1. In the case of “wall confined” plasmas, (β ≫ 1), pressure slightly varies along the radius providing less radial gradient and more stability against MHD modes. Effect of ion-ion viscosity becomes important in corrugated magnetic field. It results in the reduction of the growth rate by a factor β1/2. In the process of start up and plasma heating β < 1. If flute modes are stabilized during this period by the line-tying mechanizm ballooning modes are still unstable when β > βcr. A very low ballooning margin is predicted in multiple mirror with the large number of cells: βcr < π2 /N2. For the number of cells N ≃ 10: βcr ≃ 5%. Results of the calculations are discussed in the context of old and new multiple mirror experiments.