ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
A.A. Kabantsev, V.B. Reva, V.G. Sokolov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 185-189
Oral Presentations | doi.org/10.13182/FST99-A11963848
Articles are hosted by Taylor and Francis Online.
We report the first experimental verification of the magnetohydrodynamic (MHD) dynamo in the axisymmetric linear machine. The dynamo phenomenon, in which the magnetic-field-aligned electric current is self-generated by plasma dynamics, has been a puzzle not only in astrophysical plasmas, but also in magnetically confined laboratory plasmas for many decades. The mirror trap axisymmetric plasma, in which the unstable differential rotation of plasma column in crossed E×B fields excites the helical MHD turbulence, is a new and particularly vivid example of the dynamo effect.
By manipulating the trap's magnetic and plasma conditions, we have obtained both the parallel and the antiparallel to the magnetic field electric current with density to the order of 100 A/cm2 (total current up to 6 kA) in the plasma. The measured mean electromotive force Fem has linear dependence from the turbulent diffusion coefficient DT (r,t) and reachs up to 50 V/m. By measuring each term of Fem, the parallel MHD mean-field Ohm's law has been observed to hold within experimental error bars during plasma flow pulse. A comprehensive physical picture of the dynamo phenomenon has been obtained.