ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A.A. Kabantsev, V.B. Reva, V.G. Sokolov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 185-189
Oral Presentations | doi.org/10.13182/FST99-A11963848
Articles are hosted by Taylor and Francis Online.
We report the first experimental verification of the magnetohydrodynamic (MHD) dynamo in the axisymmetric linear machine. The dynamo phenomenon, in which the magnetic-field-aligned electric current is self-generated by plasma dynamics, has been a puzzle not only in astrophysical plasmas, but also in magnetically confined laboratory plasmas for many decades. The mirror trap axisymmetric plasma, in which the unstable differential rotation of plasma column in crossed E×B fields excites the helical MHD turbulence, is a new and particularly vivid example of the dynamo effect.
By manipulating the trap's magnetic and plasma conditions, we have obtained both the parallel and the antiparallel to the magnetic field electric current with density to the order of 100 A/cm2 (total current up to 6 kA) in the plasma. The measured mean electromotive force Fem has linear dependence from the turbulent diffusion coefficient DT (r,t) and reachs up to 50 V/m. By measuring each term of Fem, the parallel MHD mean-field Ohm's law has been observed to hold within experimental error bars during plasma flow pulse. A comprehensive physical picture of the dynamo phenomenon has been obtained.