ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Franklin R. Chang Díaz
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 87-93
Topical Review Lectures | doi.org/10.13182/FST99-A11963830
Articles are hosted by Taylor and Francis Online.
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is described. As an open-ended, RF-heated, mirror-like plasma device, the system provides access to very high and variable plasma exhaust velocities of interest in high-speed interplanetary propulsion. The three-stage system is highly asymmetric and its value rests more in its capability as a power amplifier than as a plasma confinement device. During operation, a low-temperature, high-density plasma is generated in an injector which delivers it axially to a central heating stage. Once there, the flow is further heated to the desired conditions by ion cyclotron resonance techniques before exhausting it through a magnetic nozzle to provide modulated thrust. The system has been under study since 1980. At present, a multi-center theoretical and experimental program is under way, involving several research groups in the United States and which focuses on the development of the physics and engineering of these devices. This paper provides a status report of these activities, review the applicability of the technology, and examine new areas which should be addressed in the future.