ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
R. E. Olson, G. A. Chandler, M. S. Derzon, D. E. Hebron, J. S. Lash, R. J. Leeper, T. J. Nash, G. E. Rochau, T. W. L. Sanford, N. B. Alexander, C. R. Gibson
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 260-265
Technical Paper | doi.org/10.13182/FST99-A11963934
Articles are hosted by Taylor and Francis Online.
We describe designs of hohlraums and capsules for both ignition (∼1–10 MJ) and high yield (up to ∼200 MJ) Z-pinch driven indirect-drive ICF concepts. Two potential Z-pinch hohlraum configurations – 1) the “static wall” or “on-axis” hohlraum; and 2) the “imploding liner” or “dynamic” hohlraum – are considered. Both concepts involve cryogenic, DT-filled capsules (∼2–4 mm in diameter) with Be or CH ablators (O, F, and Cu are currently being considered as dopants). Both types of hohlraums involve a Helium and/or CH foam fill. In the static wall hohlraum concept, the ICF capsule is isolated from the x-ray generation region. Advantages in the areas of capsule drive symmetry and diagnostic access might be gained from this arrangement. In the dynamic hohlraum, the ICF capsule has a direct view of the stagnation radiation. The potential advantage would result from the higher x-ray intensity and larger total capsule absorbed energy.