ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Jeffery F. Latkowski, Jorge J. Sanchez, Lee C. Pittenger
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 255-259
Technical Paper | doi.org/10.13182/FST99-A11963933
Articles are hosted by Taylor and Francis Online.
During yield operations, the materials within the National Ignition Facility (NIF) cryogenic target positioner will be exposed to high fluences of high-energy neutrons. If left unchecked, these neutrons could deposit unacceptably high amounts of energy within the cryogenic fluids. In addition, these neutrons will induce residual radioactivity within the target positioner and may lead to intolerable dose rates for maintenance personnel. Through careful design and selection of materials, however, these effects may be mitigated. The present work uses nominal design characteristics for the cryogenic target positioner to show that traditional cryogenic and structural materials will not produce an acceptable design. Further, we develop an alternate design that addresses the issues of neutron shielding and activation.