ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Jeffery F. Latkowski, Jorge J. Sanchez, Lee C. Pittenger
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 255-259
Technical Paper | doi.org/10.13182/FST99-A11963933
Articles are hosted by Taylor and Francis Online.
During yield operations, the materials within the National Ignition Facility (NIF) cryogenic target positioner will be exposed to high fluences of high-energy neutrons. If left unchecked, these neutrons could deposit unacceptably high amounts of energy within the cryogenic fluids. In addition, these neutrons will induce residual radioactivity within the target positioner and may lead to intolerable dose rates for maintenance personnel. Through careful design and selection of materials, however, these effects may be mitigated. The present work uses nominal design characteristics for the cryogenic target positioner to show that traditional cryogenic and structural materials will not produce an acceptable design. Further, we develop an alternate design that addresses the issues of neutron shielding and activation.