ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Peter S. Ebey, James K. Hoffer
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 250-254
Technical Paper | doi.org/10.13182/FST99-A11963932
Articles are hosted by Taylor and Francis Online.
Following the successful pressure loading with DT of a thin-walled plastic inertial fusion target shell (such as those designed for use at the OMEGA facility at the University of Rochester's Laboratory for Laser Energetics (UR/LLE)), continual care must be taken to safeguard the shell from being exposed to unacceptable pressure differentials across its wall. In particular, once the DT has been condensed into a liquid or solid phase and the outside pressure has been reduced, the target must be maintained below some upper cutoff temperature such that the vapor pressure of the DT is below the bursting pressure for the shell. Through the process of β-decay the DT self-heats, but while the shell is in a high vacuum environment (P << 0.8 Pa (6 mtorr) for the OMEGA layering sphere) there is only a negligible heat loss mechanism. This will cause the temperature to increase. A calculation has been done to estimate the rate of temperature increase of the loaded target under high vacuum conditions. A functional form for calculating the target's temperature increase given its starting temperature is presented. An overall result is that under high vacuum conditions the DT changes from a solid at 10 K to a liquid at 37 K (Tc=39.4 K) in about 19 minutes. This “holding time” is significantly less if the initial temperature is higher, the initial state is liquid, or the upper allowed temperature is lower. Simplifying assumptions which were made and their impact on interpreting the results of this calculation are discussed.