ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
John D. Sheliak, James K. Hoffer
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 234-243
Technical Paper | doi.org/10.13182/FST99-A11963930
Articles are hosted by Taylor and Francis Online.
Solid D-T layers are equilibrated inside a 2 mm diameter beryllium toroidal cell at temperatures ranging from 19.0 K to 19.6 K, using the beta-layering process. Each experimental run consisted of multiple cycles of rapid- or slow-freezing of the initially liquid D-T charge. Each of these freeze cycles was followed by a lengthy period of beta-layering equilibration, which was terminated by melting the layer. The temperature was changed in discrete steps at the end of some equilibration cycles in an attempt to simulate actual ICF target conditions. High-precision images of the D-T solid-vapor interface were analyzed to yield the surface roughness σrms as a sum of modal contributions. Results show an average σrms. of 1.3 ± 0.3 μm for layers equilibrated at 19.0 K and show an inverse dependence of σrms on equilibration temperature up to 19.525 K. Inducing sudden temperature perturbations lowered σrms to 1.0 ± 0.05 μm.