ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
A. Nikroo, D.A. Steinman
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 220-223
Technical Paper | doi.org/10.13182/FST99-A11963927
Articles are hosted by Taylor and Francis Online.
Large glass shells (≥ 1200 μm diameter) made by the traditional very high temperature (1650°C) long drop tower are usually wrinkled. We have found that these shells soften at relatively low temperatures. We have enlarged these shells by filling them with a few atmospheres of helium and dropping them down a very short (few feet long) tower heated to 900 to 1100°C. The helium acts as a blowing agent as the shell goes through the heated zone and causes the shells to grow larger. We have been able to smooth out large wrinkled shells by this process, as well. Glass shells as large as 2 mm in diameter and less than 6 μm out-of-round that do not have any obvious wrinkles have been made. In addition, the same process can be applied to both poly-alpha-methylstyrene (PAMS) and glow discharge polymer (GDP) shells at lower tower temperatures. Roundness of the enlarged shells is very much dependent on the wall thickness uniformity of the initial mandrels.