ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Darleane C. Hoffman, transuranium element pioneer, dies at age 98
Nuclear chemist Darleane D. Hoffman, who was renowned for her research on transuranium elements that advanced the understanding of nuclear fission, died on September 4 at her home in Menlo Park, Calif. She was 98.
Iowa origins: Hoffman was born on November 8, 1926, in Terril, Ia. She attended Iowa State University, where she earned a bachelor’s degree in chemistry in 1948 and a doctorate in physical (or nuclear) chemistry in 1951. She then began working as a chemist at Oak Ridge National Laboratory.
A. Nikroo, D.A. Steinman
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 220-223
Technical Paper | doi.org/10.13182/FST99-A11963927
Articles are hosted by Taylor and Francis Online.
Large glass shells (≥ 1200 μm diameter) made by the traditional very high temperature (1650°C) long drop tower are usually wrinkled. We have found that these shells soften at relatively low temperatures. We have enlarged these shells by filling them with a few atmospheres of helium and dropping them down a very short (few feet long) tower heated to 900 to 1100°C. The helium acts as a blowing agent as the shell goes through the heated zone and causes the shells to grow larger. We have been able to smooth out large wrinkled shells by this process, as well. Glass shells as large as 2 mm in diameter and less than 6 μm out-of-round that do not have any obvious wrinkles have been made. In addition, the same process can be applied to both poly-alpha-methylstyrene (PAMS) and glow discharge polymer (GDP) shells at lower tower temperatures. Roundness of the enlarged shells is very much dependent on the wall thickness uniformity of the initial mandrels.