ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. Steinman, A. Nikroo, D. Woodhouse
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 216-219
Technical Paper | doi.org/10.13182/FST99-A11963926
Articles are hosted by Taylor and Francis Online.
Large glass shells (≥ 1200 μm diameter) made by the traditional drop tower technique are usually thin walled (≤ 4 μm). Therefore, even the highest quality shells cannot hold more than ∼70 atmospheres (atm) of gas pressure. This report describes the strengthening of these shells by over-coating them with Glow Discharge Polymer (GDP). Glass shells overcoated with various thicknesses of GDP were permeation-filled and burst tested. It was found that tens of microns of GDP overcoating significantly increased the strength of the original glass shells. In particular, composite shells able to hold 200 atm of helium were made. The burst test survivors were tested against possible undetected microcracks by confirming that the half-life for the release of the gas from filled shells was consistent with the expected half-life for an intact shell.