ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Robert Cook, Steven R. Buckley, Evelyn Fearon, Stephen A. Letts
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 206-211
Technical Paper | doi.org/10.13182/FST99-A11963924
Articles are hosted by Taylor and Francis Online.
We report on a new method using heated density gradient columns for preparing spherical poly(α-methylstyrene) (PαMS) bead mandrels for inertial confinement fusion spherical shell targets. Using 1,2 propane diol/glycerol mixtures, stable density gradient columns for supporting PαMS beads can be prepared at temperatures as high as 150 °C. At these temperatures plasticized commercial beads become fluid and spherical, however loss of the plasticizer and very low molecular weight components of the bead due to limited solubility in the column fluid leads to surface finish problems. We also present results on PαMS beads prepared in an aqueous bath batch mode. Using these techniques beads with maximum out-of-rounds less than 5 μm have been produced.