ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
E. L. Alfonso, F.-Y. Tsai, S.-H. Chen, R. Q. Gram, D. R. Harding
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 131-137
Technical Paper | doi.org/10.13182/FST99-A11963916
Articles are hosted by Taylor and Francis Online.
Hollow polyimide shells, for use as ICF targets, were fabricated by co-depositing monomer precursors from the vapor phase onto bounced spherical mandrels. The process involved two stages: first, the deposited monomers (pyromellitic dianhydride and 4,4′-oxydianiline) reacted on the mandrel surface to form polyamic acid; second, the mandrel was heated to 300°C to imidize the polyamic acid and to decompose the mandrel. During this latter process the decomposed mandrel diffused through the thermally stable coating, leaving a polyimide shell. Depositions were performed under low (∼10−3 Torr) and high (∼10−6 Torr) vacuum. Also, flat witness films of polyimide deposited on Si wafers and NaCl allowed the mechanical properties and chemical composition of the film during the heating cycle to be measured. Polyimide shells with diameters ranging from 700 to 950 μm and wall thicknesses ranging from 2 to 13 μm were produced. The shell's sphericity was greater than 99%. Burst and buckle pressure tests on these shells yielded the estimated mechanical strength properties. The elastic modulus and tensile strength were ∼15 GPa and ∼300 MPa, respectively. The permeability of D2 through polyamic acid at 25°C was 7.4 × 10−17 mol·m/m2·Pa·s and increased to 6.4 × 10−16 mol·m/m2·Pa·s at 25°C upon curing the shell to 150°C. The permeability of D2 at 25°C through vapor-deposited polyimide flat films was measured to be 240 times greater than through the as-deposited polyamic acid, and about 7 times greater than through commer ially available solution-cast Kapton.