ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
UNC, GE agree to clean up former New Mexico uranium mine
The United Nuclear Corporation (UNC) and General Electric Company will undertake a nearly $63 million, decade-long cleanup project at the former Northeast Church Rock Mine in northwestern New Mexico under a consent decree with the United States, the Navajo Nation, and the state of New Mexico.
Thomas J. Asaki
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 126-130
Technical Paper | doi.org/10.13182/FST99-A11963915
Articles are hosted by Taylor and Francis Online.
Experiments have been conducted in which the D2 fill pressure has been determined for several closed millimeter-size aluminum and beryllium shells. The vibrational resonance frequency spectrum of the shells was used to calculate the sound velocity of the interior gas. This velocity, along with the equation-of-state, determined the gas pressure and density. The accuracy in determining the fill conditions is within 0.5% in both pressure and density for near critical density (ρ ≳ 9 mol/L) gas over a wide range of temperatures (190 K to 300K). Reduced accuracy was apparent at low density. An attempt was made to determine the fill density of one shell by acoustic observation of the dew point temperature. While this temperature was recorded very accurately, the uncertainty in the saturated vapor density curve near the critical point yielded inaccurate results. These methods were shown to be unaffected by small deviations in the sphericity of the gas-filled cavity.