ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. McEachern, C. Alford
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 115-118
Technical Paper | doi.org/10.13182/FST99-A11963912
Articles are hosted by Taylor and Francis Online.
We are studying the feasibility of using boron doping to refine the grain structure of sputter-deposited Be for NIF ignition capsule ablators. The goal is to improve the surface finish and homogeneity of these coatings. Films deposited on flat silicon substrates display a pronounced change in structure at a concentration of ∼11 at.% B. At lower levels of B, grain sizes of about 200 nm are observed. AFM images show the roughness of these films to be about 20 nm rms. At higher levels of B, the grains size drops to below 50 nm and the roughness decreases to less than 2.5 nm rms. Films deposited on capsules do not show the same behavior. In particular, at 15 at.% B, the capsule coatings have nodular structure with an rms roughness of greater than 50 nm. When viewed in cross section, however, no structure is seen with either the flat films or the capsule coatings. We believe that differences in substrate temperature may be largely responsible for the observed behavior.