ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mark Newton, Mike Wilson
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1122-1126
National Ignition Facility-Laser Facilities | doi.org/10.13182/FST98-A11963764
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF), being built at Lawrence Livermore National Laboratory (LLNL) will utilize a 1.8 MJ glass laser to study inertial confinement fusion. This laser will be driven by a power conditioning system which must simultaneously deliver over 260 MJ of electrical energy to the nearly 7700 flashlamps. The power conditioning system is divided into independent modules that store, shape and deliver pulses of energy to the flashlamps.
The NIF power conditioning system which is being designed and built by Sandia National Laboratory (SNL) in collaboration with LLNL and industrial partners, is a different architecture from any laser power conditioning system previously built at LLNL. This particular design architecture was chosen as the most cost-effective way to reliably deliver the large amount of energy needed for NIF.
This paper will describe the development and design of the NIF power conditioning system. It will discuss the design objectives as well as the key design issues and technical hurdles that are being addressed in an ongoing component development and system validation program being supported by both SNL and LLNL.