ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Mark Newton, Mike Wilson
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1122-1126
National Ignition Facility-Laser Facilities | doi.org/10.13182/FST98-A11963764
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF), being built at Lawrence Livermore National Laboratory (LLNL) will utilize a 1.8 MJ glass laser to study inertial confinement fusion. This laser will be driven by a power conditioning system which must simultaneously deliver over 260 MJ of electrical energy to the nearly 7700 flashlamps. The power conditioning system is divided into independent modules that store, shape and deliver pulses of energy to the flashlamps.
The NIF power conditioning system which is being designed and built by Sandia National Laboratory (SNL) in collaboration with LLNL and industrial partners, is a different architecture from any laser power conditioning system previously built at LLNL. This particular design architecture was chosen as the most cost-effective way to reliably deliver the large amount of energy needed for NIF.
This paper will describe the development and design of the NIF power conditioning system. It will discuss the design objectives as well as the key design issues and technical hurdles that are being addressed in an ongoing component development and system validation program being supported by both SNL and LLNL.