ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
R. Sawicki, J. Bowers, R. Hackel, D. Larson, K. Manes, J. Murray
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1097-1104
National Ignition Facility-Laser Facilities | doi.org/10.13182/FST98-A11963760
Articles are hosted by Taylor and Francis Online.
The engineering team of the National Ignition Facility (NIF) has developed a highly optimized hardware design that satisfies stringent cost, performance and schedule requirements. After a 3-year effort, the design will culminate at the end of FY98 with the completion of major Title II design reviews. Every element of the facility from optic configuration, facility layout and hardware specifications to material selection, fabrication techniques and part tolerancing has been examined to assure the minimum cost per joule of laser energy delivered on target. In this paper, the design of the major subsystems will be discussed from the perspective of this optimization emphasis. Focus will be placed on the special equipment hardware which includes laser, beam transport, opto-mechanical, system control and target area systems. Some of the unique features in each of these areas will be discussed to highlight how significant cost savings have been achieved while maintaining reasonable and acceptable performance risk. Key to the success has also been a vigorous development program that commenced nearly 4 years ago and has been highly responsive to the specific needs of the NIF project. Supporting analyses and prototyping work that evolved from these parallel activities will also be discussed.