ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
E.T. Cheng, R.J. Cerbone, Y.-K.M. Peng, J.D. Galambos, D. Strickler, I.N. Sviatoslavsky, C.P.C. Wong, D.K. Sze, X.R. Wang, M. Simnad, M. Tillack
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1066-1070
Nuclear Testing and Design (Poster Session) | doi.org/10.13182/FST98-A11963755
Articles are hosted by Taylor and Francis Online.
Progress is given on the investigation of a low cost, scientifically attractive, and technologically feasible volumetric neutron source (VNS) based on the spherical torus (ST) concept. The ST-VNS has a major radius of 1.07 m, an aspect ratio of 1.4, and a plasma elongation 3. It can produce a neutron wall loading ultimately up to 5 MW/m2 averaged over the outboard test section when the fusion power reaches 380 MW. Initial operation of this device can be at a level of 1 MW/m2 or lower. Higher performance blanket components can be developed to raised the neutron wall loading. Using staged high wall loading operation scheme and optimistic availability projected for the VNS device, a neutron fluence of more than 30 MW-y/m2 can be expected to accumulate within 20 years of operation. Assessments of lifetime and reliability of fusion core components will thus be allowed in a power reactor relevant environment. A full-function testing of fusion core components may also become possible because of the high neutron wall loading capability. Integrated testing of tritium breeding in such a full scale power reactor relevant VNS device can be very useful to verify the self-sufficiency of fuel cycle in candidate power blanket concepts.