ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
I.N. Sviatoslavsky, E. A. Mogahed, E. T. Cheng, R. J. Cerbone, Y-K. M. Peng, X. R. Wang
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1061-1065
Nuclear Testing and Design (Poster Session) | doi.org/10.13182/FST98-A11963754
Articles are hosted by Taylor and Francis Online.
Mechanical, thermal and neutronics design aspects of the toroidal field coil centerpost (CP) for a spherical torus based volumetric neutron source (ST-VNS) are presented. It is being investigated with support of a DOE-SBIR under the direction of TSI Research Inc. of Solana Beach, CA. The ST-VNS is to provide a test bed for developing nuclear technologies, as well as qualifying blanket designs for future fusion reactors. The device is scoped to be capable of staged operation with a neutron wall loading range of 0.5–4.0 MW/m2 as the physics and engineering design assumptions are raised from modest to aggressive levels. Margins in the design are ensured, since operation at 2 MW/m2 neutron wall loading will satisfy the mission of the VNS. The device has a naturally diverted plasma with a major radius of 1.1m, a minor radius of 0.78 m for an aspect ratio of 1.4, an elongation of 3, a triangularity of 0.6 and can be driven with neutral beams (NB) or radio frequency (RF). It utilizes a single turn; unshielded normal conducting CP made of dispersion strengthened (DS) Cu that is 15.5 m long and has a diameter of 0.55 m at the midplane. Resistive heating at the start of operation is 153 MW and increases to 178 MW after three full power years. The effect of transmutation in the Cu causes an increase in the resistivity, producing a shift in the CP current towards the center. The results of this shift on power distribution are reported.