ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
I.N. Sviatoslavsky, E. A. Mogahed, E. T. Cheng, R. J. Cerbone, Y-K. M. Peng, X. R. Wang
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1061-1065
Nuclear Testing and Design (Poster Session) | doi.org/10.13182/FST98-A11963754
Articles are hosted by Taylor and Francis Online.
Mechanical, thermal and neutronics design aspects of the toroidal field coil centerpost (CP) for a spherical torus based volumetric neutron source (ST-VNS) are presented. It is being investigated with support of a DOE-SBIR under the direction of TSI Research Inc. of Solana Beach, CA. The ST-VNS is to provide a test bed for developing nuclear technologies, as well as qualifying blanket designs for future fusion reactors. The device is scoped to be capable of staged operation with a neutron wall loading range of 0.5–4.0 MW/m2 as the physics and engineering design assumptions are raised from modest to aggressive levels. Margins in the design are ensured, since operation at 2 MW/m2 neutron wall loading will satisfy the mission of the VNS. The device has a naturally diverted plasma with a major radius of 1.1m, a minor radius of 0.78 m for an aspect ratio of 1.4, an elongation of 3, a triangularity of 0.6 and can be driven with neutral beams (NB) or radio frequency (RF). It utilizes a single turn; unshielded normal conducting CP made of dispersion strengthened (DS) Cu that is 15.5 m long and has a diameter of 0.55 m at the midplane. Resistive heating at the start of operation is 153 MW and increases to 178 MW after three full power years. The effect of transmutation in the Cu causes an increase in the resistivity, producing a shift in the CP current towards the center. The results of this shift on power distribution are reported.