ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Caron Jantzen, E. P. Lee, Per F. Peterson
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1047-1052
Inertial Fusion (Poster Session) | doi.org/10.13182/FST98-A11963752
Articles are hosted by Taylor and Francis Online.
Gas dynamics in the heavy-ion inertial-fusion-energy power plant, HYLIFE-II, have been modeled using the code TSUNAMI. Simulations were run and results compared using both ideal-gas and the partial-ionization equations of state. Developed by Zeldovich and Raizer, the partial-ionization model approximates the Saha equation for multiply ionized species in a gas mixture. Results from a cylindrically symmetric simulation indicate an initial, low density, burst of high energy particles enters the final-focus transport beam line within 28 microseconds after the blast, much faster than the proposed 1 millisecond shutter closing time. After approximately 300 microseconds the chamber debris flux levels off to one eighth its peak value and maintains this level until the shutter closes. Uncertainty in IFE target design motivated the adjustment of two target parameters: target mass and the ratio of x-ray to debris kinetic energy. Although initial jet x-ray ablation is considered, neither secondary radiation nor condensation were modeled. Therefore results are conservative.