ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Dan Gabriel Cepraga, Gilio Cambi, Manuela Frisoni, Gian Carlo Panini
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 969-973
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963738
Articles are hosted by Taylor and Francis Online.
The ANITA-4/F is a code package for the activation characterisation of materials exposed to neutrons in fusion machines. The package has been intensively used by ENEA for safety assessment of the International Thermonuclear Experimental Reactor ITER to evaluate the activated corrosion product source terms. This paper presents a summary description of the package and gives the details of its capabilities. The main component of the package is an updated version of the activation code ANITA that computes the radioactive inventory of a material subject to neutron irradiation, continuous or stepwise. It provides activity, atomic density, decay heat, biological hazard and gamma-ray source of each nuclide; total activity, decay heat, contact dose equivalent, gamma-ray spectra and other relevant parameters, for the irradiated material, versus cooling time. As an option, those parameters may be plotted by the GRANITA module, as a function of the cooling time. The code is provided with a complete data base that includes: 1) the FENDL/A-2 neutron activation data libraries (both for the standard 100 GAM-II and 175 VITAMIN-J groups structure), 2) the FENDL/D-2 decay data library, 3) the ICRP dose coefficients for ingestion and inhalation of radionuclides. Arbitrary structure can be used for the neutron irradiation spectrum. It is internally converted to one of the standard structures. Continuous or multi-steps (up to 2000 burn-dwell intervals) can be considered for the operational scenario. A different level of the irradiation flux can be used for each one of the exposure time step. The paper presents also, as an example, an application to the neutron exposure characterisation for the AISI 316 LN of the first wall, with reference to the basic performance phase of ITER.