ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
José M. Balmisa, Micah D. Lowenthal, Ehud Greenspan, Javier Sanz, Nathan Stone
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 964-968
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963737
Articles are hosted by Taylor and Francis Online.
A new practical method has been developed for calculating neutron-activation inventories of target material in inertial fusion energy (IFE) reactors such as HYLIFE-II. It accounts for irradiation both in the target and in the internal blanket and for material circulation in and out of the primary loop. The continuous removal of target material in the real system is approximated by a batch extraction (BE). A single target is followed through its lifetime in the reactor using “transition matrices” for activation and decay which are generated by the ACAB code package. The inventory of all the isotopes of interest accumulating in the reactor is obtained by superimposing the contribution of single targets. The new BE model simulates, within minutes, the evolution of more than 150 isotopes over the 30-year reactor lifetime, explicitly accounting for the millions of neutron pulses experienced by a single target and summing the inventories of all the targets.