ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
José M. Balmisa, Micah D. Lowenthal, Ehud Greenspan, Javier Sanz, Nathan Stone
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 964-968
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963737
Articles are hosted by Taylor and Francis Online.
A new practical method has been developed for calculating neutron-activation inventories of target material in inertial fusion energy (IFE) reactors such as HYLIFE-II. It accounts for irradiation both in the target and in the internal blanket and for material circulation in and out of the primary loop. The continuous removal of target material in the real system is approximated by a batch extraction (BE). A single target is followed through its lifetime in the reactor using “transition matrices” for activation and decay which are generated by the ACAB code package. The inventory of all the isotopes of interest accumulating in the reactor is obtained by superimposing the contribution of single targets. The new BE model simulates, within minutes, the evolution of more than 150 isotopes over the 30-year reactor lifetime, explicitly accounting for the millions of neutron pulses experienced by a single target and summing the inventories of all the targets.