ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. L. Hillis, J. T. Hogan, P. Andrew, J. Ehrenberg, M. Groth, M. von Hellermann, L.D. Horton, R. Monk, P. Morgan, M. Stamp
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 941-945
Plasma Facing Components Technology (Poster Session) | doi.org/10.13182/FST98-A11963734
Articles are hosted by Taylor and Francis Online.
Future fusion reactors, like ITER, will rely on an active exhaust system to pump tritium (T) in the divertor and then recirculate it to the fuel stream. Estimation of the T inventory requires a detailed T balance, which determines if T is preferentially enriched relative to D in its pathway from the main plasma to the divertor and pump. On the Joint European Torus (JET), the neutral T concentration in the sub-divertor (pumping plenum and region below the divertor strike point plate) is measured with a modified Penning gauge coupled to a high-resolution spectrometer. In addition, T concentration measurements are made in the plasma edge and strike point region with a spectrometer viewing these regions. The sub-divertor and divertor (region above the strike point plate) T concentration measurements show differences during initial T uptake and retention which are characteristic of wall deposition properties. Since wall retention is one of the factors in calculating the eventual T inventory in a reactor, a detailed study of this process has been undertaken.