ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ken Tomabechi, Yuichi Ogawa, Naoto Sekimura, Yuzo Fukai, Akiyoshi Hatayama, Nobuyuki Inoue, Akira Kohyama, Sei-Ichiro Yamazaki, Seiji Mori
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 863-867
Fusion Blanket and Shield Technology (Poster Session) | doi.org/10.13182/FST98-A11963720
Articles are hosted by Taylor and Francis Online.
The possibility of developing a cost competitive fusion power plant with a water-cooled blanket concept, which has much experience in nuclear power plants, was examined. The new blanket design is based on using reduced activation ferritic steel components and an advanced super-heated steam cycle which is used to realize high thermal efficiency. The high value of thermal efficiency is very effective in reducing the cost of electricity.
The allowable temperature range of the structure material, reduced activation ferritic steel, is assumed to be 350K to 900K based on expectations from the material research and development program. A mixture of lithium oxide pebbles and beryllium pebbles is installed in the breeding zone for high tritium breeding ratio and high thermal conductivity. Mixture ratio of beryllium and lithium-6 enrichment were optimized from the viewpoint of temperature distribution in the breeding zone, achievable tritium breeding ratio and its reduction due to burn up. The reference blanket system has a local tritium breeding ratio of 1.37. The arrangement of cooling channels in the breeding zones and flow rate and inlet temperature of the coolant were also optimized to keep the temperatures of structure materials, breeding materials and coolant in the allowable range. The first wall is cooled by pressurized water at about 570 K. The coolant out of the first wall is led to the breeding zone and starts to boil. The steam is super-heated up to 750 K in the blanket. This high temperature raises the thermal efficiency of the turbine to 41 %.