ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Ronald W. Petzoldt
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 831-839
Inertial Fusion Technology | doi.org/10.13182/FST98-A11963716
Articles are hosted by Taylor and Francis Online.
An experiment is being conducted at Lawrence Berkeley National Laboratory to investigate and demonstrate the engineering feasibility of accurately • injecting and tracking IFE targets into a vacuum chamber. A helium gas gun is used to inject non-cryogenic, aluminum and delrin (plastic) target-sized projectiles. They are optically tracked at three locations using photodiodes. An essential part of this experiment is tracking each projectile's position and predicting when and where it will arrive close enough to the driver beam focal spot so that with active beam steering, IFE driver beams can accurately hit each target Although the standard deviation in projectile position in each lateral direction is about 2 mm, projectile position measurements 1 m from the gun barrel have been used to predict position measurements at 3 m from the barrel with standard deviation less than 100 μm in the lateral directions. These results are encouraging and meet the expected beam steering distance and target position prediction accuracy requirements for indirect drive IFE power plants. Later this year, we intend to combine this experiment with a focused ion beam experiment and use real time position calculations to steer the beam through a small hole in the projectile.