ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Deep Fission raises $30M in financing
Since the Department of Energy kicked off a 10-company race with its Nuclear Reactor Pilot Program to bring test reactors on line by July 4, 2026, the industry has been waiting for new headlines proclaiming progress. Aalo Atomics broke ahead of the pack first by announcing last week that it had broken ground on its 50-MWe Aalo-X at Idaho National Laboratory.
F.M.G. Wong, N.A. Mitchell, T. Kato, H. Nakajima, R. Randall, M. Morra
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 815-821
Superconducting Magnets and Joints | doi.org/10.13182/FST98-A11963714
Articles are hosted by Taylor and Francis Online.
Incoloy 908, an iron-nickel base superalloy that was developed as a Nb3Sn jacket material for Cable-In-Conduit Conductors, has been selected as the jacket material for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) and Central Solenoid (CS) coils. It has a coefficient of expansion matching Nb3Sn (to minimise Jc and Tc degradation due to differential contraction after the reaction heat treatment). The alloy exhibits a characteristic of iron-nickel base superalloys: oxygen embrittlement along grain boundaries as a result of heating in an oxygen atmosphere when tensile surface stresses are present. For applications using Incoloy 908, techniques are required to control levels of either oxygen or tensile surface stresses during heat treatment. R & D results performed to develop and qualify such techniques for industrial applications are presented. The work has concentrated on establishing the lowest achievable oxygen levels inside the cable space during the reaction heat treatment and determining the conditions that can be tolerated inside and outside the jacket before SAGBO occurs. The results were applied in the ITER Model Coil programmes, in which about 5.5 km of conductor have been successfully heat treated.