ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Itacil C. Gomes, Donald L. Smith, Edward T. Cheng
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 706-713
Neutronics Experiments and Analysis | doi.org/10.13182/FST98-A11963697
Articles are hosted by Taylor and Francis Online.
Current designs of fusion-reactor systems seek to use radiation-resistant, low-activation materials that support long service lifetimes and minimize radioactive-waste problems after decommissioning. Reliable assessment of fusion materials performance requires accurate neutron-reaction cross sections and radioactive-decay constants. The problem areas usually involve cross sections since decay parameters tend to be better known. The present study was motivated by two specific questions: i) Why are the 51V(n,np)50Ti cross section values in the ENDF/B-VI library so large (a gas production issue)? ii) How well known are the cross sections associated with producing 7.4times105 y 26Al in silicon carbide by the process 28Si(n,np+d)27Al(n,2n)26Al (a long-lived radioactivity issue)? The energy range 14–15 MeV of the D-T fusion neutrons is emphasized. Cross-section error bars are needed so that uncertainties in the gas and radioactivity generated over the lifetime of a reactor can be estimated. We address this issue by comparing values obtained from prominent evaluated cross-section libraries. Small differences between independent evaluations indicate that a physical quantity is well known while the opposite signals a problem. Hydrogen from 51V(n,p)51Ti and helium from 51V(n,α)48Sc are also important sources of gas in vanadium, so they too were examined. We conclude that 51V(n,p)51Ti is adequately known but 51V(n,np+d)50Ti is not. The status for helium generation data is quite good. Due to recent experimental work, 27Al(n,2n)26Al seems to be fairly well known. However, the situation for 28Si(n,np+d)27Al remains unsatisfactory.