ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Itacil C. Gomes, Donald L. Smith, Edward T. Cheng
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 706-713
Neutronics Experiments and Analysis | doi.org/10.13182/FST98-A11963697
Articles are hosted by Taylor and Francis Online.
Current designs of fusion-reactor systems seek to use radiation-resistant, low-activation materials that support long service lifetimes and minimize radioactive-waste problems after decommissioning. Reliable assessment of fusion materials performance requires accurate neutron-reaction cross sections and radioactive-decay constants. The problem areas usually involve cross sections since decay parameters tend to be better known. The present study was motivated by two specific questions: i) Why are the 51V(n,np)50Ti cross section values in the ENDF/B-VI library so large (a gas production issue)? ii) How well known are the cross sections associated with producing 7.4times105 y 26Al in silicon carbide by the process 28Si(n,np+d)27Al(n,2n)26Al (a long-lived radioactivity issue)? The energy range 14–15 MeV of the D-T fusion neutrons is emphasized. Cross-section error bars are needed so that uncertainties in the gas and radioactivity generated over the lifetime of a reactor can be estimated. We address this issue by comparing values obtained from prominent evaluated cross-section libraries. Small differences between independent evaluations indicate that a physical quantity is well known while the opposite signals a problem. Hydrogen from 51V(n,p)51Ti and helium from 51V(n,α)48Sc are also important sources of gas in vanadium, so they too were examined. We conclude that 51V(n,p)51Ti is adequately known but 51V(n,np+d)50Ti is not. The status for helium generation data is quite good. Due to recent experimental work, 27Al(n,2n)26Al seems to be fairly well known. However, the situation for 28Si(n,np+d)27Al remains unsatisfactory.