ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
IAEA to help monitor plastic pollution in the Galapagos Islands
The International Atomic Energy Agency announced that its Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative has partnered with Ecuador’s Oceanographic Institute of the Navy (INOCAR) and Polytechnic School of the Coast (ESPOL) to build microplastic monitoring and analytical capacity to address the growing threat of marine microplastic pollution in the Galapagos Islands.
N. A. Uckan, H-W. Bartels, D. Boucher, T. Honda
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 661-665
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963690
Articles are hosted by Taylor and Francis Online.
Verification efforts to compare the results from the safety assessment code SAFALY (with 0-D plasma model) and the 1.5-D plasma transport code PRETOR are discussed. The SAFALY code was used for calculating safety related plasma transients documented in ITER safety reports (ITER-FDR). The PRETOR code was used for plasma performance assessments for many ITER design related problems. Four test cases are considered as a verification basis for the SAFALY-PRETOR comparison: (i) increase in fueling by a specified amount and parameter scans to explore conditions leading to a maximum fusion power transient, (ii) sudden improvement (doubling) of plasma energy confinement time, (iii) sudden injection of 100 MW of heating power into an ignited plasma, and (iv) stop of plasma fueling. Verification studies of plasma transient analysis with SAFALY and PRETOR code systems have confirmed that the significant number of results reported in safety reports [such as ITER-FDR] can be reproduced by both code systems, and that the safety reports were based on the more conservative results.