ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
N. A. Uckan, H-W. Bartels, D. Boucher, T. Honda
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 661-665
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963690
Articles are hosted by Taylor and Francis Online.
Verification efforts to compare the results from the safety assessment code SAFALY (with 0-D plasma model) and the 1.5-D plasma transport code PRETOR are discussed. The SAFALY code was used for calculating safety related plasma transients documented in ITER safety reports (ITER-FDR). The PRETOR code was used for plasma performance assessments for many ITER design related problems. Four test cases are considered as a verification basis for the SAFALY-PRETOR comparison: (i) increase in fueling by a specified amount and parameter scans to explore conditions leading to a maximum fusion power transient, (ii) sudden improvement (doubling) of plasma energy confinement time, (iii) sudden injection of 100 MW of heating power into an ignited plasma, and (iv) stop of plasma fueling. Verification studies of plasma transient analysis with SAFALY and PRETOR code systems have confirmed that the significant number of results reported in safety reports [such as ITER-FDR] can be reproduced by both code systems, and that the safety reports were based on the more conservative results.