ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Shigeo Yoshida, Isao Murata, Akito Takahashi
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 656-660
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963689
Articles are hosted by Taylor and Francis Online.
In the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan, which produces fusion neutrons by D-T reaction, we have many experience in handling tritium targets and tritiated contaminants. In OKTAVIAN, the transition of tritium concentration in urine and exhaled water of some workers was measured with a liquid scintillation counter for years. Using the measured results between the concentration of tritium in urine and in exhaled water, we have found a simple method to lead excretion parameters in order to estimate the internal exposure dose. The first decreasing term, HTO component, was expressed as a simple exponential function with the measured concentration of HTO in exhaled water. The second and third decreasing terms, OBT component, were expressed as a sum of two exponential functions using the difference between the concentration of HTO in exhaled water and the total tritium concentration in urine in equilibrium. And the excretion function of total tritium in urine can be expressed as a sum of their three exponential decreasing terms. Moreover, without measurements of longer-term, it becomes possible to analyze the longer half-life in OBT component at a short time.