ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Shigeo Yoshida, Isao Murata, Akito Takahashi
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 656-660
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963689
Articles are hosted by Taylor and Francis Online.
In the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan, which produces fusion neutrons by D-T reaction, we have many experience in handling tritium targets and tritiated contaminants. In OKTAVIAN, the transition of tritium concentration in urine and exhaled water of some workers was measured with a liquid scintillation counter for years. Using the measured results between the concentration of tritium in urine and in exhaled water, we have found a simple method to lead excretion parameters in order to estimate the internal exposure dose. The first decreasing term, HTO component, was expressed as a simple exponential function with the measured concentration of HTO in exhaled water. The second and third decreasing terms, OBT component, were expressed as a sum of two exponential functions using the difference between the concentration of HTO in exhaled water and the total tritium concentration in urine in equilibrium. And the excretion function of total tritium in urine can be expressed as a sum of their three exponential decreasing terms. Moreover, without measurements of longer-term, it becomes possible to analyze the longer half-life in OBT component at a short time.